Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction.
نویسندگان
چکیده
Aging is strongly correlated with the accumulation of oxidative damage in DNA, particularly in mitochondria. Oxidative damage to both mitochondrial and nuclear DNA is repaired by the base excision repair (BER) pathway. The "mitochondrial theory of aging" suggests that aging results from declining mitochondrial function, due to high loads of damage and mutation in mitochondrial DNA (mtDNA). Restriction of caloric intake is the only intervention so far proven to slow the aging rate. However, the molecular mechanisms underlying such effects are still unclear. We used caloric-restricted (CR) mice to investigate whether lifespan extension is associated with changes in mitochondrial BER activities. Mice were divided into two groups, receiving 100% (PF) or 60% (CR) of normal caloric intake, a regime that extends mean lifespan by approximately 40% in CR mice. Mitochondria isolated from CR mice had slightly higher uracil (UDG) and oxoguanine DNA glycosylase (OGG1) activities but marginally lower abasic endonuclease and polymerase gamma gap-filling activities, although these differences were tissue-specific. Uracil-initiated BER synthesis incorporation activities were significantly lower in brain and kidney from CR mice but marginally enhanced in liver. However, nuclear repair synthesis activities were increased by CR, indicating differential regulation of BER in the two compartments. The results indicate that a general up-regulation of mitochondrial BER does not occur in CR.
منابع مشابه
Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that th...
متن کاملOpposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function
The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells o...
متن کاملMitochondrial DNA ligase III function is independent of Xrcc1.
Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function wou...
متن کاملCaloric restriction and genomic stability
Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is es...
متن کاملRegulation of base excision repair: Ntg1 nuclear and mitochondrial dynamic localization in response to genotoxic stress
Numerous human pathologies result from unrepaired oxidative DNA damage. Base excision repair (BER) is responsible for the repair of oxidative DNA damage that occurs in both nuclei and mitochondria. Despite the importance of BER in maintaining genomic stability, knowledge concerning the regulation of this evolutionarily conserved repair pathway is almost nonexistent. The Saccharomyces cerevisiae...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2004